Chemoenzymatic Synthesis of O-Glycopeptides Carrying the Tumor Associated T_N-Antigen Structure

Peter Braun, a Herbert Waldmannb, 2,3,* and Horst Kunza,*

^aInstitut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Becherweg 18-20, D-6500 Mainz, Germany ^bUniversität Karlsruhe, Institut für Organische Chemie und Biochemie, Richard-Willstätter-Weg 2, D-7500 Karlsruhe, Germany

(Received 3 May 1993)

Abstract—The application of the lipase-catalyzed C-terminal deprotection of heptyl esters for the construction of acid- and base-labile O-glycopeptides carrying the characteristic structural element of the tumor associated T_N -antigen (GalNAc $\alpha \rightarrow$ Ser/Thr) is described

Scheme I.

Introduction

O-Glycoproteins exhibit important roles in numerous biological and immunological processes, e.g. they operate as surface receptors or as recognition components in the communication between cells, and they have also been described as tumor associated antigens. The investigation of biological processes in which glycoproteins are involved requires O-glycopeptides which contain the characteristic linkage region between the peptide and the carbohydrate part. However, the structural complexity and multifunctionality as well as the acid- and base-lability of the Oglycopeptides demand the application of numerous protecting groups which have to be orthogonally stable to each other and can selectively be removed under almost neutral conditions. Enzymes often operate at neutral, weakly acidic or weakly basic pH-values and may combine a high selectivity for the reactions they catalyze together with a broad substrate tolerance. Therefore, enzymatic protecting group techniques² offer viable alternatives to classical chemical methods.¹ Thus, we have demonstrated that the N-terminal amino function and the C-terminal carboxy group of peptides can be selectively deprotected by means of penicillin G acylase³ and lipases,⁴ respectively. The lipase-mediated removal of heptyl (Hep) esters can advantageously be applied for the construction of model-Oglycopeptides.⁵ It should be noted that proteases which, however, can attack peptide bonds have already been employed for the deprotection of glycosylated amino acids and peptides.6

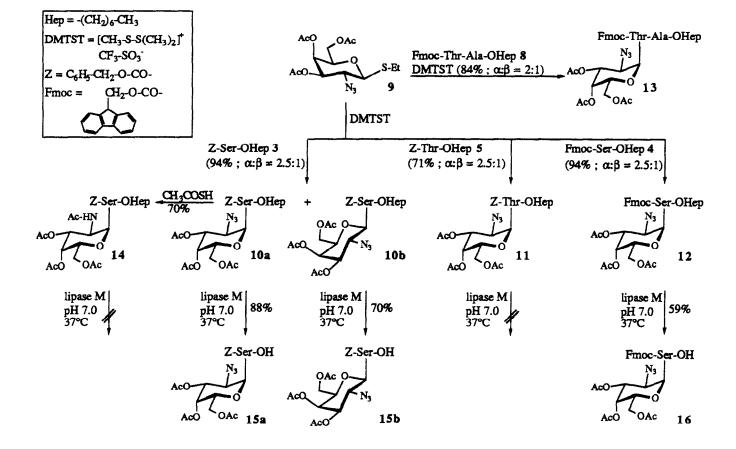
This paper describes the application of the lipase-catalyzed C-terminal deprotection in the construction of acid- and base-labile O-glycopeptides carrying the characteristic structural element of the tumor associated T_N -antigen (GalNAc α ->Ser/Thr).¹

Dedicated to Prof. Dr Hans-Dieter Jakubke on the occasion of his 60th birthday.

Results and Discussion

To construct the required glycosyl acceptors 3, 4 or 5 serine-1 or threonine heptyl ester hydrotosylate 2 were protected at the N-terminus according to established procedures (Scheme I). In addition, the protected dipeptide 8 was prepared from the selectively blocked amino acids 6 and 7 by using 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ) as condensating reagent.

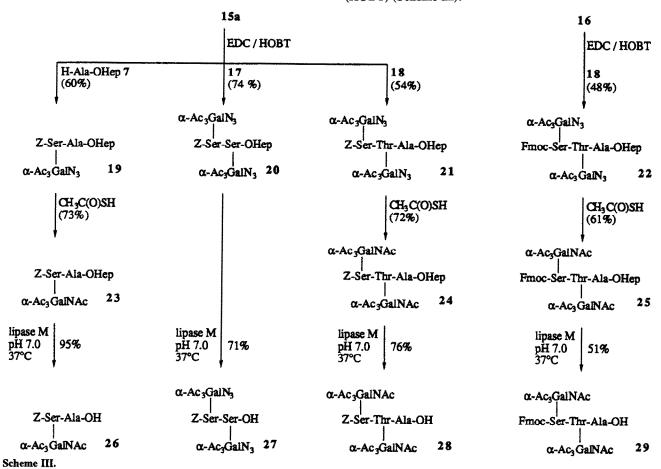
The serine- and threonine derivatives 3–5 and 8 were O-glycosylated by applying the thioglycoside 9 as glycosyldonor in the presence of dimethyl(methylthio)-sulfoniumtriflate (DMTST).8 The glycoconjugates 10–13 were formed in high yields as mixtures of anomers (α : β ratio ca. 2.5:1) which could be separated by flash chromatography. The 2-azido- α -glycoside 10a was converted to the acetamido compound 14 by treatment with thioacetic acid.9


For the removal of the Hep-ester group from the glycoconjugates 10-14, 15 different lipases originating from various biological sources were investigated (Table 1). These enzymes are commercially available, inexpensive and often do not require water soluble substrates since they preferentially operate at the interface between water and organic media. As lipases in general do not exhibit proteolytic activity, their application appears to be advantageous for the construction of peptides. In contrast, if proteases are employed for the removal of blocking

groups from peptides and glycopeptides hydrolysis of peptide bonds may occur.^{2,6c}

Out of the 15 biocatalysts investigated, lipase M (Amano) from Mucor javanicus showed the most advantageous properties for the selective hydrolysis of the glycosylated amino acid heptyl esters. The enzyme accepts 10a, 10b and 12 as substrates and selectively deblocks the Cterminal carboxy function at pH 7 and 37 °C in high yields to furnish the free acids 15a, 15b and 16 on a mmol scale (Scheme II). In these enzymatic processes undesired reactions were not observed. The N-terminal urethanes, the azido functions, the base labile acetyl groups and the acidand base-labile glycosidic linkages remained totally unaffected. The isolation of the acids 15 and 16 was achieved easily by simple extraction and subsequent chromatography. The obtained results demonstrate that the Z-protected serine glycosides 15 were obtained in higher vield than the corresponding Fmoc-derivative 16. This is traced back to the less advantageous emulsifying properties caused by the hydrophobic Fmoc group which make compound 12 less accessible to the enzyme than 10.

 $\textbf{Table 1. Lipases investigated for the enzymatic removal of the heptylesters from the glycopeptides \textbf{10-14} }$


name of lipase	origin
lipase AP (Amano)	Aspergillus niger
lipase M-AP (Amano)	Mucor javanicus
lipase P	Pseudomonas fluorescens
ipase F-AP (Amano)	Rhizopus javanicus
lipase N (Amano)	Rhizopus niveus
lipase AY (Amano)	Candida cylindracea
lipase G (Amano)	Penicillium cyclopium
lipase R (Amano)	Penicillium roqueforti
lipase from Rhizopus niveus (Fluka)	Rhizopus niveus
lipase from Rhizopus delemar	Rhizopus delemar
CCL (Sigma)	Candida cyllindracea
lipase WG (Sigma)	wheat germ
PPL (Sigma)	porcine pancreas
lipase from Rhizopus arrhizus	Rhizopus arrhizus
(Boehringer Mannheim)	
esterase: PLE-A (Amano)	pig liver

Surprisingly, the threonine heptyl ester 11 was not hydrolyzed by any of the enzymes investigated. Since the solubility of 11 is comparable to 10, the enhanced steric demand of the threonine residue in comparison to serine seems to be responsible for the inferior substrate properties. Also, the serine glycoside 14, which differs from 10 only in the presence of an acetamido group instead of an azido function, could not be deprotected enzymatically by lipases. In this case, solubility problems cannot be responsible for the failure of the biocatalyzed transformation. Rather, the change in the preferred conformation of 14 compared to 10a may be the reason, probably caused by a hydrogen bond between the acetamido-NH and the carbonyl C=O of the Hep ester or the urethane group. The removal of the Hep ester from the glycoside 14 was only possible by employing papain, according to a procedure described by Cantacuzène et al. 66

Whereas in all lipase-catalyzed transformations investigated for 10–12 no attack on the O-acetates of the carbohydrate occurred, from 14 the O-acetyl groups could be removed selectively by means of a lipase from wheat germ. In turn, the selective removal of O-acetates from carbohydrates using this enzyme proceeded without attack on the C-terminal ester. Furthermore the respective orthogonal cleavage of the Hep esters with papain without affecting the sugar protecting groups was also successful for more hydrophilic serine and threonine derivatives. ¹⁰

To construct complex multiple glycosylated glycopeptides, carrying the α -GalNAc \rightarrow Ser(Thr) structural element characteristic for the tumor associated T_N antigen, the α -glycosides 15a and 16 were converted into the glycopeptides 19–22 using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and 1-hydroxybenzotriazole (HOBT) (Scheme III). 11 , 12

The N-terminally deprotected glycoconjugates 17 and 18 required for this purpose were obtained from the fully protected Fmoc-glycoconjugates 12 and 13 by treatment with morpholine (Scheme IV).¹³

Deblocked compounds 17 and 18 were not isolated. After evaporation in vacuo of the morpholine they were used for the chain elongation reactions. The glycopeptides 19, 21 and 22 carrying azido functions in the carbohydrate parts were converted to the respective acetamido compounds 23–25 by treatment with thioacetic acid. The glycopeptide heptyl ester 23 and the multiple glycosylated esters 20,

24 and 25 were then selectively deprotected at the C-terminus in high yields on a 100 mg -1 g scale by applying lipase M (Scheme III). Even from these sterically demanding and sensitive substrates, the enzyme exclusively hydrolyzes the heptyl ester. Neither the urethanes and the amide bonds in the peptide part nor the O-acetates and the amides in the carbohydrate portions were attacked. Furthermore, the reaction conditions (pH 7, 37 °C) once more are so mild that the acid- and base-labile O-glycosides remained unaffected, i.e. neither β -elimination of the carbohydrates nor an anomerization of the glycosides was observed.

Scheme IV.

The successful hydrolysis of 20 which contains two hexoses attached to two amino acids which are immediately linked to each other is of particular interest. This example highlights that the lipase may accept even sterically very demanding serine-glycopeptides. Compounds 24 and 25 embody a glycosylated serine as well as a threonine Ac₃GalNAc glycoside. In both cases, the presence of an additional alanine moiety ensures that neither the threonine y-CH₃ nor the carbohydrate NH-Ac group prevent a successful enzymatic hydrolysis (vide supra). Analogously to 12 and 10a (see Scheme II), the Fmoc-protected glycopeptide 25 was deprotected in a lower yield than the corresponding Z-glycopeptide 24. Once more the high hydrophobicity of the Fmoc-groups causes a substantial reduction of the solubility of the substrate and thus a limited accessibility of 25 to the lipase.

In conclusion, the enzymatic deprotection technique described in this paper can advantageously be applied for the construction of complex multifunctional and sensitive O-glycopeptides carrying the characteristic linkage region of the T_N antigen. The selectively deprotected glycopeptides **26–29** obtained by this technique are valuable intermediates for the construction of more complex glycoconjugates. Their application in the chemoenzymatic synthesis of oligopeptides embodying the determining linkage region of tumor-associated antigens will be reported on in due course.

Experimental Section

The general methods used have been described previously.³⁻⁵ Lipase from *Mucor javanicus* was obtained from Amano Pharmaceutical Company.

N-Benzyloxycarbonyl-L-serine heptyl ester 3

To a solution of 9.4 g (0.025 mol) serine heptyl ester hydro-p-toluenesulfonate⁴ 1 and 6.5 g (0.05 mol) N-ethyldiisopropylamine in 200 ml of dichloromethane is added dropwise 4.2 g (0.025 mol) of benzyl chloroformate at 0 °C within 30 min. After stirring at 0 °C for 1 h and at r.t. for 14 h the reaction mixture is extracted three times with 50 ml of 0.2 M HCl, 50 ml of NaHCO₃ solution and 50 ml of water. The organic layer is dried with MgSO₄ and concentrated *in vacuo*. The product is obtained from the residue by flash chromatography using petroleum ether/ethyl acetate (3:1, v/v) as eluent. Yield: 8.0 g (95%), waxy

solid, $[\alpha]_{22}^D$ = +8.5° (c = 1.0, CHCl₃), R_f = 0.40 (petroleum ether/ethyl acetate 1:2). 90-MHz ¹H-NMR (DMSO-d₆): δ = 7.3 (m, 6H, NH, C₆H₅-), 5.0 (s, 2H, CH₂-C₆H₅), 4.9 (t, 1H, OH), 4.2–3.9 (m, 3H, α-CH, OCH₂ Hep), 3.6 (m, 2H, β-CH₂ Ser), 1.7–1.1 (m, 10H, CH₂-(CH₂)₅-CH₃), 0.85 (m, 3H, CH₃ Hep). C₁₈H₂₇NO₅ (337.4). Anal. calcd: C 64.07, H 8.07, N 4.15. Found: C 64.02, H 7.95, N 3.99.

N-(9-Fluorenylmethoxycarbonyl)-L-serine heptyl ester 4

To a solution of 12.0 g (0.032 mol) of serine heptyl esterhydro-p-toluenesulfonate⁴ 1 and 8.27 g (0.064 mol) Nethyl-diisopropylamine in 200 ml of dichloromethane is added successively 8.38 g (0.032 mol) of 9-fluorenylmethyl chloroformate at 0 °C within 30 min. After stirring at 0 °C for 1 h and at r.t. for 14 h the reaction mixture is extracted three times with 50 ml of 0.2 M HC1, 50 ml of NaHCO₃ solution and 50 ml of water. The organic layer is dried with MgSO₄ and concentrated in vacuo. The product is obtained from the residue by flash chromatography using petroleum ether/ethyl acetate (3:1, v/v) as eluent. Yield: 12.0 g (88%), m.p.: 78 °C, $[\alpha]_{22}^{D} = +5.4^{\circ}$ (c = 1.0, CHCl₃), $R_f = 0.14$ (petroleum ether/ethyl acetate 3:1). 200-MHz ¹H-NMR (CDCl₃): $\delta = 7.77-7.25$ (m, 8H, aromatic H), 5.80 (d, 1H, J = 6.8 Hz, NH), 4.43-4.39 (m, 3H, α-CH, OCH₂ Fmoc), 4.25–4.14 (m, 3H, OCH₂ Hep, 9-H Fmoc), 3.94 (bs, 2H, β-CH₂ Ser), 2.38 (bs, 1H, OH), 1.64 (m, 2H, OCH₂-C \underline{H}_2 - Hep), 1.27 (m, 8H, -(C \underline{H}_2)₄-CH₃), 0.86 (m, 3H, CH₃ Hep). C₂₅H₃₁NO₅ (425.5). Anal. calcd: C 70.57, H 7.34, N 3.29. Found: C 71.06, H 7.37, N 3.16.

N-Benzyloxycarbonyl-L-threonine heptyl ester 5

As described for 3, the protected threonine ester 5 (10.0 g, 95% yield) is obtained from 6.6 g (0.03 mol) of threonine heptyl ester toluenesulfonate⁴ 2. Oil, $[\alpha]_{22}^D = -8.9^\circ$ (c = 1.0, CHCl₃), $R_f = 0.45$ (petroleum ether/ethyl acetate 1:2). 90-MHz ¹H-NMR (DMSO-d₆): δ = 7.3 (bs, 5H, C₆H₅-), 7.1 (d, 1H, NH), 5.0 (s, 2H, CH₂-C₆H₅), 4.8 (t, 1H, OH), 4.0 (m, 4H, α-CH, β-CH, OCH₂ Hep), 1.8–1.0 (m, 13H, CH₂-(CH₂)₅-CH₃, CH₃ Thr), 0.8 (m, 3H, CH₃ Hep). C₁₉H₂₉NO₅ (351.4). Anal. calcd: C 64.93, H 8.32, N 3.99. Found: C 65.18, H 8.19, N 4.13.

N-(9-Fluorenylmethoxycarbonyl)-L-threonyl-L-alanine heptyl ester 8

To a solution of 2.1 g (5.9 mmol) alanine heptyl ester hydro-p-toluoenesulfonate⁴ 7 and 0.76 g (5.9 mmol) N-ethyl-diisopropylamine in 20 ml of dichloromethane, a solution of 2.0 g (5.9 mmol) Fmoc-threonine 6 and 2.2 g (8.8 mmol) 2-ethoxy-1-ethoxycarbonyl-1,2-dihydro-quinoline (EEDQ) in 20 ml of dichloromethane is added. After stirring for 14 h at r.t. the reaction mixture is worked up as described for 3. Yield: 2.33 g (78%), m.p.: $106 \,^{\circ}$ C, $[\alpha]_{22}^{D} = -26.5^{\circ}$ (c = 1.0, CHCl₃), $R_f = 0.43$ (petroleum ether/ethyl acetate 1:1). 90-MHz 1 H-NMR (CDCl₃): $\delta = 7.80$ –7.25 (m, 8H, aromatic H), 6.80 (d, 1H, NH Ala),

5.72 (d, 1H, NH Ser), 4.61–4.05 (m, 8H, α -CH Ser, α -CH Thr, β -CH Thr, O-CH₂ Fmoc, 9-H Fmoc, OCH₂ Hep), 3.17 (broad, 1H, OH), 1.58 (m, 2H, OCH₂-CH₂-Hep), 1.39 (d, J = 7.3 Hz, 3H, CH₃ Ala), 1.29 (m, 8H, -(CH₂)₄-CH₃), 1.17 (d, J = 6.8 Hz, 3H, CH₃ Thr), 0.86 (m, 3H, CH₃ Hep). C₂₉H₃₈N₂O₆ (510.63), Anal. calcd: C 68.21, H 7.50, N 5.49. Found: C 67.88, H 7.47, N 5.94.

N-Benzyloxycarbonyl-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy- α - and β -D-galactopyranosyl)-L-serine heptyl ester 10a/10b

To a solution of 3.75 g (0.01 mol) ethyl-3,4,6-tri-O-acetyl-2-azido-2-deoxy-1-thio- β -D-galactopyranoside 9 and 3.37 g (0.01 mol) Z-Ser-O Hep 3 in a mixture of 10 ml CH₂Cl₂ and 10 ml toluene are added 4 g molecular sieves 4 Å. After stirring for 1 h at r.t. 3.87 g (0.015 mol) dimethyl(methylthio)sulfoniumtriflate (DMTST) was added. After stirring for an additional 16 h the reaction mixture is neutralized by addition of 1.94 g (0.015 mol) of N-ethyldiisopropylamine, filtered and concentrated in vacuo. The anomers 10a and 10b are isolated by flash chromatography of the residue in a combined yield of 6.12 g (94%).

N-Benzyloxycarbonyl-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)-L-serine heptyl ester 10a

4.36 g (67%), amorphous, $[\alpha]_{22}^D = +88.9^\circ$ (c = 1.0, CHCl₃), $R_f = 0.58$ (petroleum ether/ethyl acetate 2:1). 400-MHz ¹H-NMR (CDCl₃): $\delta = 7.3$ (m, 5H, C₆H₅-), 5.81 (d, J = 7.9 Hz, 1H, NH), 5.39 (dd, $J_{3,4} = 2.7$ Hz, $J_{4,5}$ < 1 Hz, 1H, 4-H), 5.23 (dd, $J_{2.3} = 11.2$ Hz, $J_{3.4} = 3.3$ Hz, 1H, 3-H), 5.13 (d, J = 12.2 Hz, 1H, OCH_{2a}-C₆H₅), 5.01 (d, J = 12.2 Hz, 1H, OCH_{2b}-C₆H₅), 4.92 (d, $J_{1,2} = 3.5$ Hz, 1H, 1-H), 4.52 (m, 1H, α -CH Ser), 4.14 (m, 3H, OCH₂ Hep, 5-H), 4.07–3.96 (m, 4H, 6-H_{a/b}, β -CH₂–Ser), 3.58 (dd, $J_{1,2} = 3.5$ Hz, $J_{2,3} = 11.2$ Hz, 1H, 2-H), 2.10, 2.01, 1.98 (3s, 9H, 3 CH₃CO), 1.62 (m, 2H, OCH₂- CH_2 - Hep), 1.26 (m, 8H, -(CH_2)₄- CH_3), 0.85 (m, 3H, CH₃ Hep). 50.3-MHz 13 C-NMR (CDCl₃): $\delta = 170.20$, 169.8, 169.5 (CO), 156.0 (CO, urethane), 136.0 (*ipso-C*), 128.10, 127.99 (aromatic C), 99.05 (C-1), 69.54, 67.05, 66.19, (<u>C</u>H₂-C₆H₅, O-CH₂ Hep, β-C Ser), 67.93, 67.51, 67.22 (C-3, C-4, C-5), 61.62 (C-6), 57.43 (C-2), 54.48 $(\alpha$ -C Ser), 31.60, 28.76, 28.42, 25.69, 22.48 (5 CH₂) Hep), 20.46 (CH₃CO), 13.93 (CH₃ Hep). C₃₀H₄₂N₄O₁₂ (650.7), Anal. calcd: C 55.38, H 6.51, N 8.61. Found: C 55.45, H 6.64, N 8.44.

N-Benzyloxycarbonyl-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy-β-D-galactopyranosyl)-L-serine heptyl ester 10b

1.76g (27%), amorphous, $[\alpha]_{22}^D = -12.9^\circ$ (c = 1.1, CHCl₃), $R_{\rm f} = 0.48$ (petroleum ether/ethyl acetate 2:1) 400-MHz ¹H-NMR (CDCl₃): $\delta = 7.32$ (m, 5H, C₆H₅-), 5.75 (d, J = 8.0 Hz, 1H, NH), 5.27 (dd, $J_{3,4} = 2.6$ Hz, $J_{4,5} < 1$ Hz, 1H, 4-H), 5.11 (s, 2H, OCH₂-C₆H₅), 4.71 (dd, $J_{2,3} = 10.9$ Hz, $J_{3,4} = 3.4$ Hz, 1H, 3-H), 4.50 (m, 1H, α -CH Ser), 4.30 (dd, $J_{1} = 2.94$ Hz, $J_{2} = 10.38$ Hz, 1H, β -CH₂ σ -

Ser), 4.27 (d, $J_{1,2} = 8.05$ Hz, 1H, 1-H), 4.15 (t, J = 6.73Hz, 2H, OCH₂ Hep), 4.06 (d, J = 6.74 Hz, 2H, 6-H_{a/b}), 3.90 (dd, $J_1 = 3.34$ Hz, $J_2 = 10.35$ Hz, 1H, β -CH_{2b}-Ser), 3.74 (ddd, $J_{4,5}$ < 1Hz, $J_{5,6a}$ = 6.7 Hz, $J_{5,6a}$ = 6.8 Hz, 1H, 5-H), 3.60 (dd, $J_{1,2} = 8.0$ Hz, $J_{2,3} = 10.9$ Hz, 1H, 2-H), 2.10, 2.01, 2.01 (3s, 9H, 3 CH₃CO), 1.62 (m, 2H, OCH_2-CH_2-Hep), 1.26 (m, 8H, $-(CH_2)_4-CH_3$), 0.85 (m, 3H, CH₃ Hep). 100.6-MHz 13 C-NMR (CDCl₃): $\delta =$ 170.19, 169.87, 169.61, 169.40 (CO), 155.82 (CO, urethane), 136.26 (ipso-C), 128.47, 128.11, 127.99 (aromatic C), 102.49 (C-1), 70.91, 70.76, 66.20 (C-3, C-4, C-5), 69.79, 66.99, 65.98, (<u>C</u>H₂-C₆H₅, O-CH₂ Hep, β -C Ser), 61.08 (C-6), 60.79 (C-2), 54.33 (α -C Ser), 31.60, 28.74, 28.40, 25.61, 22.48 (5 CH₂ Hep), 20.51, 20.46 (CH₃CO), 13.94 (CH₃ Hep). C₃₀H₄₂N₄O₁₂ (650.7). Anal. calcd: C 55.38, H 6.51, N 8.61. Found: C 54.92, H 6.31, N 8.50.

N-Benzyloxycarbonyl-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)-L-threonine heptyl ester 11

As described for 10, the threonine glycoside 11 is obtained in 71 % yield (854 mg) from 632 mg (1.8 mmol) of Nbenzyloxycarbonyl-L-threonine heptyl ester 5. α : β ratio = 2.5:1, 610 mg (51%) α -anomer, oil, $[\alpha]_{22}^D = +62.4^\circ$ (c = 1.0, CHCl₃), $R_f = 0.48$ (toluene/ethyl acetate 2:1). 400-MHz ¹H-NMR (CDCl₃): $\delta = 7.37-7.27$ (m, 5H, C₆H₅-), 5.51 (d, J = 9.54 Hz, 1H, NH), 5.40 (d, $J_{3,4} = 2.3$ Hz, 1H, 4-H), 5.19 (dd, $J_{2,3} = 11.2$ Hz, $J_{3,4} = 3.2$ Hz, 1H, 3-H), 5.13 (s, 2H, $OC_{H_2}-C_6H_5$), 4.98 (d, $J_{1,2} = 3.71$ Hz, 1H, 1-H), 4.43–4.36 (m, 2H, α -CH Thr, β -CH Thr), 4.20 (dt, $J_{4,5} = 0.77 \text{ Hz}, J_{5,6} = 6.5 \text{ Hz}, 1\text{H}, 5\text{-H}), 4.12 \text{ (t, } J = 6.8 \text{ })$ Hz, 2H, OCH₂ Hep), 4.05 (d, J = 6.35 Hz, 2H, 6-H_{a/b}), 3.62 (dd, $J_{1,2} = 3.68$ Hz, $J_{2,3} = 11.20$ Hz, 1H, 2-H), 2.11, 2.01, 2.00 (3s, 9H, 3 CH₃CO), 1.61 (m, 2H, OCH₂-CH₂-Hep), 1.30 (d, J = 6.44 Hz, 3H, CH₃ Thr), 1.28–1.21 (m, 8H, $-(CH_2)_4-CH_3$), 0.85 (m, 3H, CH₃ Hep). 50.3-MHz ¹³C-NMR (CDCl₃): $\delta = 170.17$, 170.06, 169.83, 169.62 (CO), 156.70 (CO, urethane), 136.15 (ipso-C), 128.40, 128.02, 127.90 (aromatic C), 99.29 (C-1), 76.98 (β-C Thr), 68.26, 67.39, 66.96 (C-3, C-4, C-5), 67.39, 65.99 (<u>C</u>H₂-C₆H₅, O-CH₂ Hep), 61.67 (C-6), 58.69, 57.72 (C-2, α-C Thr), 31.56, 28.74, 28.32, 25.68, 22.44 (5 CH₂ Hep), 20.46 (CH₃CO), 18.38 (CH₃ Thr), 13.92 (CH₃ Hep). C₃₁H₄₂N₄O₁₂ (664.7). Anal. calcd: C 56.02, H 6.67, N 8.43. Found: C 55.77, H 6.53, N 8.32.

N-(9-Fluorenylmethoxycarbonyl)-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)-L-serine heptyl ester 1 2

As described for 10, the serine glycoside 12 is obtained in 94% yield (4.17 g) from 2.55 g (1.8 mmol) of N-(9-fluorenylmethoxycarbonyl)-L-serine heptyl ester 4. α:β ratio = 2.5:1, 2.93g (66%) α-anomer, amorphous, $[\alpha]_{22}^{\rm D}$ = +88.4° (c = 0.5, CHCl₃), $R_{\rm f}$ = 0.46 (petroleum ether/ethyl acetate 2:1). 400-MHz ¹H-NMR (CDCl₃): δ = 7.74–7.28 (m, 8H, aromatic H), 5.94 (d, J = 7.94 Hz, 1H, NH), 5.42 (dd, $J_{3,4}$ = 2.4 Hz, $J_{4,5}$ < 1 Hz, 1H, 4-H), 5.28 (dd, $J_{2,3}$ = 11.2 Hz, $J_{3,4}$ = 3.2 Hz, 1H, 3-H), 4.92 (d, $J_{1,2}$ =

3.44 Hz, 1H, 1-H), 4.54 (m, 1H, α -CH Ser), 4.38 (d, J =7.3 Hz, 2H, OCH₂ Fmoc), 4.23 (t, J = 7.28 Hz, 1H, 9-H Fmoc), 4.18 (m, 3H, OCH₂ Hep, 5-H), 4.08-3.99 (m, 4H, 6-H_{a/b}, β -CH₂-Ser), 3.60 (dd, $J_{1,2} = 3.5$ Hz, $J_{2,3} =$ 11.2 Hz, 1H, 2-H), 2.12, 2.04, 1.94 (3s, 9H, 3 CH₃CO). 1.65 (m, 2H, OCH_2-CH_2-Hep), 1.33-1.25 (m, 8H, $-(CH_2)_4$ -CH₃), 0.85 (m, 3H, CH₃ Hep). 100.6-MHz ¹³C-NMR (CDCl₃): $\delta = 170.28$, 169.86, 169.62, 169.46 (CO), 155.82 (CO, urethane), 143.77, 141.77, 127.70, 127.06, 125.08, 119.94 (aromatic C), 99.17 (C-1), 67.90, 67.46, 67.21 (C-3, C-4, C-5), 69.63, 67.31, 66.28 (OCH₂ Fmoc, O-CH₂ Hep, B-C Ser), 61.61 (C-6), 57.40 (C-2), 54.45 (α-C Ser), 47.07 (C-9 Fmoc), 31.61, 28.78, 28.44, 25.70, 22.50 (5 CH₂ Hep), 20.54, 20.49 (CH₃CO), 13.97 (CH₃ Hep). C₃₇H₄₆N₄O₁₂ (738.8). Anal. calcd: C 60.15, H 6.28, N 7.58. Found: C 60.29, H 6.28, N 7.42.

N-(9-Fluorenylmethoxycarbonyl)-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)-L-threonyl-L-alanine heptyl ester 13

As described for 10, the threonine glycopeptide 13 is obtained in 84% yield (2.1 g) from 1.5 g (3.0 mmol) N-(9fluorenylmethoxycarbonyl)-L-threonyl-L-alanine heptyl ester 8. α : β ratio = 2:1, 1.4 g (56%) α -product, m.p.: 78 °C, $[\alpha]_{22}^D$ = +50.2° (c = 0.51, CHCl₃), R_f = 0.54 (toluene/ethyl acetate 5:2). 400-MHz ¹H-NMR (CDCl₃): δ = 7.74-7.26 (m, 9H, aromatic H, NH Ala), 5.95 (d, J =6.48 Hz, 1H, NH Thr), 5.42 (d, $J_{3,4} = 2.4$ Hz, 1H, 4-H), 5.34 (dd, $J_{2,3} = 10.88$ Hz, $J_{3,4} = 3.17$ Hz, 1H, 3-H), 5.24 (d, $J_{1,2} = 3.62$ Hz, 1H, 1-H), 4.51 (m, 1H, α -CH Ala), 4.36 (d, J = 7.15 Hz, 2H, OCH₂ Fmoc), 4.32-4.04 (m, 8H, α -CH Thr, β -CH Thr, 9-H Fmoc, 5-H, 6-H_{a/b}, OCH₂ Hep), 3.92 (dd, $J_{1,2} = 3.65$ Hz, $J_{2,3} = 10.85$ Hz, 1H, 2-H), 2.13, 2.03, 2.00 (3s, 9H, 3 CH₃CO), 1.60 (m, 2H, OCH_2-CH_2 - Hep), 1.39 (d, J = 6.99 Hz, 3H, CH_3 Ala), 1.38–1.19 (m, 8H, $-(C_{H_2})_4$ –CH₃), 1.20 (d, J = 6.46 Hz, 3H, CH₃ Thr), 0.85 (m, 3H, CH₃ Hep). 100.6-MHz ¹³C-NMR (CDCl₃): $\delta = 172.16$, 170.18, 169.91, 169.39, 167.68 (CO), 155.82 (CO, urethane), 143.70, 143.57, 141.21, 127.63, 126.99, 124.95, 119.92, 119.89 (aromatic C), 97.43 (C-1), 74.92 (β-C Thr), 69.46, 67.45, 67.05 (C-3, C-4, C-5), 67.13, 65.52 (OCH₂ Fmoc, O-CH₂- Hep), 61.60 (C-6), 58.40 (C-2), 56.68 (\alpha-C Thr), 48.35 (α-C Ala) 47.06 (C-9 Fmoc), 31.56, 28.74, 28.48, 25.63, 22.43 (5 CH₂ Hep), 20.48 (CH₃CO), 17.81 (CH₃ Ala), 15.56 (CH₃ Thr), 13.91 (CH₃ Hep). C₄₁H₅₃N₅O₁₃ (823.9). Anal. calcd: C 59.59, H 6.48, N 8.50. Found: C 59.56, H 6.48, N 8.45.

N-Benzyloxycarbonyl-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- α -D-galactopyranosyl)-L-serine heptyl ester 14

A mixture of 430 mg (0.66 mmol) of the 2-azidoglycoside **10a** and 5 ml of thioacetic acid is stirred for 16 h at r.t., concentrated *in vacuo* and the 2-acetamido compound **14** is isolated by flash chromatography with petroleum ether/ethyl acetate 4:1 in 70% yield (310 mg) as an amorphous solid. $[\alpha]_{22}^D = +81.3^\circ$ (c = 1.2, CHCl₃), $R_f = 0.40$ (petroleum ether/ethyl acetate 1:3). 400-MHz ¹H-NMR (CDCl₃): $\delta = 7.30$ (m, 5H, C_6H_5 -), 5.87 (d, J = 8.4

Hz, 1H, NH), 5.83 (d, J = 9.6 Hz, 1H, NH), 5.31 (dd, $J_{3.4}$ ≈ 2.93 Hz, $J_{4.5} < 1$ Hz, 1H, 4-H), 5.09 (s, 2H, OCH₂- C_6H_5), 5.05 (dd, $J_{2,3} = 11.5$ Hz, $J_{3,4} = 3.0$ Hz, 1H, 3-H), 4.79 (d, $J_{1,2} = 3.3$ Hz, 1H, 1-H), 4.51 (m, 2H, α -CH Ser, 2-H), 4.14–3.94 (m, 6H, 6-H_{a/b}, OCH₂ Hep, 5-H, β -CH_{2a}-Ser), 3.84 (dd, $J_1 = 3.0$ Hz, $J_2 = 10.4$ Hz, 1H β -CH_{2b}-Ser), 2.11, 1.98, 1.94, 1.91 (4s, 12H, 4 CH₃CO), 1.59 (m, 2H, OCH₂-CH₂- Hep), 1.25 (m, 8H, $-(CH_2)_4$ -CH₃), 0.85 (m, 3H, CH₃ Hep). 100,6-MHz ¹³C-NMR $(CDCl_3)$: $\delta = 170.82$, 170.34, 170.23, 170.12 (CO), 155.82 (CO, urethane), 135.94 (ipso-C), 128.52, 128.26, 128.09 (aromatic C), 98.91 (C-1), 69.33, 66.15 (CH₂-C₆H₅, O-CH₂- Hep, β-C Ser), 68.23, 67.17 (C-3, C-4, C-5), 61.85 (C-6), 54.39 (α-C Ser), 47.55 (C-2), 31.58, 28.73, 28.43, 25.69, 22.47 (5 CH₂ Hep), 23.03 (CH₃CON), 20.63, 20.61, 20.60 (CH₃COO), 13.95 (CH₃ Hep). C₃₂H₄₆N₂O₁₃ (666.7). Anal. calcd: C 57.65. H 6.95, N 4.20. Found: C 57.64, H 6.86, N 4.28.

N-Benzyloxycarbonyl-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)-L-serine **15a**

To a solution of 4 g of lipase M (Amano) from Mucor javanicus in 250 ml of 0.2 M sodium phosphate buffer (pH = 7.0) is added a solution of 2 g (3.1 mmol) of the heptyl ester 10a in 10 ml of acetone and the reaction mixture is shaken gently at 37 °C for 24 h. After saturation with NaCl, the aqueous phase is extracted three times with 200 ml ethyl acetate, the combined organic layers are dried with MgSO₄ and concentrated in vacuo. The residue is purified by flash chromatography using first ethyl acetate as eluent and then ethyl acetate/ethanol 8:2 for the isolation of the product. Yield: 1.50 g (88%), amorphous solid, $[\alpha]_{22}^{D} = +146.9^{\circ}$ (c = 1.1, CHCl₃), $R_f =$ 0.33 (ethyl acetate/methanol 2:1). 400-MHz ¹H-NMR (DMSO-d₆): $\delta = 12.88$ (bs, 1H, COOH), 7.87 (d, J = 8.6Hz, 1H, NH), 7.33 (m, 5H, C_6H_5 -), 5.32 (dd, $J_{2,3} = 11.1$ Hz, $J_{3,4} = 3.3$ Hz, 1H, 3-H), 5.28 (dd, $J_{3,4} = 3.1$ Hz, $J_{4,5} <$ 1 Hz, 1H, 4-H), 5.08 (d, $J_{1,2} = 3.5$ Hz, 1H, 1-H), 5.05 (d, J= 12.6 Hz, 1H, OCH_{2 α}-C₆H₅), 5.02 (d, J = 12.6 Hz, 1H, $OCH_{2b}-C_6H_5$), 4.36 (t, J = 6.4 Hz, 1H, 5-H), 4.32 (ddd, J_1 = 3.6 Hz, J_2 = 5.3 Hz, J_3 = 8.8 Hz, 1H, α -CH Ser), 4.04 (dd, $J_{5,6a} = 5.5$ Hz, $J_{6a,6b} = 11.2$ Hz, 1H, 6-H_a), 3.97 (dd, $J_{5,6b} = 7.2 \text{ Hz}, J_{6a,6b} = 11.2 \text{ Hz}, 1\text{H}, 6\text{-H}_b), 3.85 \text{ (dd}, J_1 =$ 3.4 Hz, $J_2 = 9.9$ Hz, 1H, β -CH_{2a} Ser), 3.80 (dd, $J_1 = 5.6$ Hz, $J_2 = 9.9$ Hz, 1H, β -CH_{2b} Ser), 3.70 (dd, $J_{1,2} = 3.5$ Hz, $J_{2,3} = 11.1 \text{ Hz}, 1\text{H}, 2\text{-H}, 2.09, 1.97, 1.94 (3s, 9H, 3)$ CH₃CO). 100.6-MHz 13 C-NMR (DMSO-d₆): $\delta = 171.00$, 169.90, 169.69, 169.23 (CO), 156.13 (CO, urethane). 136.87 (ipso-C), 128.22, 127.62 (aromatic C), 97.53 (C-1), 67.73, 65.49, ($\underline{C}H_2-C_6H_5$, β -C Ser), 67.62, 67.35, 66.27 (C-3, C-4, C-5), 61.34 (C-6), 56.84 (C-2), 53.93 $(\alpha$ -C Ser), 20.28, 20.26 (CH₃CO). C₂₃H₂₈N₄O₁₂ (552.5). Anal. calcd: C 50.00, H 5.11, N 10.14. Found: C 49.99, H 5.19, N 9.92.

N-Benzyloxycarbonyl-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy-β-D-galactopyranosyl)-L-serine 15b

As described for 15a, the acid 15b is obtained from 200 mg (0.31 mmol) of the ester 10b in 70% yield (120 mg)

as amorphous solid. $[\alpha]_{22}^D = -9.9^\circ$ (c = 1.0, CHCl₃), $R_f =$ 0.22 (ethyl acetate/methanol 2:1), 400-MHz ¹H-NMR (DMSO-d₆): $\delta = 12.95$ (bs, 1H, COOH), 7.41 (d, J = 8.3Hz, 1H, NH), 7.30 (m, 5H, C_6H_5 -), 5.16 (dd, $J_{3,4} = 3.2$ Hz, $J_{4,5}$ < 1 Hz, 1H, 4-H), 5.03 (s, 2H, OC<u>H</u>₂-C₆H₅), 4.92 (dd, $J_{2,3} = 10.8$ Hz, $J_{3,4} = 3.4$ Hz, 1H, 3-H), 4.69 (d, $J_{1,2} = 8.1 \text{ Hz}$, 1H, 1-H), 4.30 (ddd, $J_1 = 4.9 \text{ Hz}$, $J_2 = 7.2$ Hz, $J_3 = 7.2$ Hz, 1H, α -CH Ser), 4.14 (m, 1H, 5-H), 4.04 (m, 2H, 6-H_{a/b}), 3.97 (dd, $J_1 = 7.2$ Hz, $J_2 = 10.5$ Hz, 1H, β -CH_{2a} Ser), 3.88 (dd, $J_1 = 4.6$ Hz, $J_2 = 10.5$ Hz, 1H, β -CH_{2b} Ser), 3.65 (dd, $J_{1,2} = 8.1$ Hz, $J_{2,3} = 10.7$ Hz, 1H, 2-H), 2.10, 1.98, 1.97 (3s, 9H, 3 CH₃CO). 50.3-MHz ¹³C-NMR (DMSO-d₆): $\delta = 170.02$, 169.87, 169.74, 169.21 (CO), 155.82 (CO, urethane), 136.83 (ipso-C), 128.23, 127.69, 127.55 (aromatic C), 100.55 (C-1), 70.43, 69.91, 66.45 (C-3, C-4, C-5), 68.35, 65.54, (<u>C</u>H₂-C₆H₅, β-C Ser), 61.10 (C-6), 60.38 (C-2), 53.81 (\alpha-C Ser), 20.34, 20.27 (CH₃CO). $C_{23}H_{28}N_4O_{12}$ (552.5). Anal. calcd: C 50.00, H 5.11, N 10.14. Found: C 50.31, H 5.17, N 9.80.

N-(9-Fluorenylmethoxycarbonyl)-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)-L-serine **16**

As described for 15a, the acid 16 is obtained from 2.00 g (2.71 mmol) of the ester 12 in 59% yield (1.02 g) as amorphous solid. $[\alpha]_{22}^D = +101.5^{\circ} (c = 0.5, CH_3OH), R_f$ = 0.54 (ethyl acetate/methanol 2:1). 400-MHz ¹H-NMR (DMSO-d₆): $\delta = 12.90$ (bs, 1H, COOH), 8.00 (d, J = 8.6Hz, 1H, NH), 7.89-7.29 (m, 8H, aromatic H), 5.36 (dd, $J_{2.3} = 11.2 \text{ Hz}, J_{3.4} = 3.4 \text{ Hz}, 1\text{H}, 3\text{-H}), 5.31 \text{ (d, } J_{3.4} = 2.9 \text{ (d)}$ Hz, 1H, 4-H), 5.11 (d, $J_{1.2} = 3.5$ Hz, 1H, 1-H), 4.37–4.21 (m, 5H, OCH₂ Fmoc, 9-H Fmoc, α-CH Ser, 5-H), 3.98 $(dd, J_{5,6a} = 7.1 \text{ Hz}, J_{6a,6b} = 11.2 \text{ Hz}, 1H, 6-H_a), 3.93 (dd,$ $J_{5,6b} = 5.5 \text{ Hz}, J_{6a,6b} = 11.3 \text{ Hz}, 1\text{H}, 6\text{-H}_b), 3.88 \text{ (dd, } J_1 =$ 3.6 Hz, $J_2 = 10.0$ Hz, 1H, β -CH_{2a} Ser), 3.82 (dd, $J_1 = 5.9$ Hz, $J_2 = 10.0$ Hz, 1H, β -CH_{2b} Ser), 3.70 (dd, $J_{1,2} = 3.5$ Hz, $J_{2,3} = 11.2$ Hz, 1H, 2-H), 2.10, 1.99, 1.88 (3s, 9H, 3 CH₃CO). 100.6-MHz 13 C-NMR (CDCl₃): $\delta = 171.03$, 169.91, 169.67, 169.31 (CO), 156.08 (CO, urethane), 143.74, 140.63, 127.56, 126.96, 125.22, 120.01 (aromatic C), 97.48 (C-1), 67.62, 67.35, 67.29 (C-3, C-4, C-5), 65.83 (OCH₂ Fmoc, β -C Ser), 61.42 (C-6), 56.82 (C-2), 53.93 (\alpha-C Ser), 46.56 (C-9 Fmoc), 20.33, 20.28, 20.23 (CH₃CO). C₃₀H₃₂N₄O₁₂ (640.6). Anal. calcd: C 56.25, H 5.04, N 8.75. Found: C 56.89, H 5.32, N 8.14.

N-Benzyloxycarbonyl-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy- α -D-galactopyranosyl)-L-seryl-L-alanine heptyl ester 19

A solution of 600 mg (0.92 mmol) of the carboxylic acid 15a, 177 mg (0.92 mmol) of 1-ethyl-3-(3-dimethyl-aminopropyl)carbodiimide (EDC) and 249 mg (1.84 mmol) 1-hydroxybenzotriazole (HOBT) in 10 ml of dichloromethane/DMF (9:1) is stirred for 1 h at r.t. and a solution of 332 mg (0.92 mmol) alanine heptyl ester hydrotosylate 7 and 119 mg (0.92 mmol) of N-ethyl-diisopropylamine in 2 ml of dichloromethane is added. After stirring for an additional 48 h the reaction mixture is extracted twice with 5 ml of 0.1 M HCl and water, and the organic layers are dried with MgSO₄ and concentrated *in vacuo*. From the

residue the glycodipeptide ester 19 is obtained by flash chromatography in 60% yield (400 mg) as a colourless oil. $[\alpha]_{22}^{D} = +94.4^{\circ}$ (c = 0.54, CHCl₃), $R_f = 0.32$ (petroleum ether/ethyl acetate 2:1). 200-MHz 1 H-NMR (CDCl₃): δ = 7.29 (bs, 5H, C_6H_{5-}), 6.98 (d, J = 6.2 Hz, 1H, NH Ala), 5.81 (d, J = 7.3 Hz, 1H, NH Ser), 5.35 (m, 2H, 3-H, 4-H), 5.07 (m, 3H, 1-H, OCH₂-C₆H₅), 4.47 (m, 1H, α -CH), 4.39 (m, 1H, α-CH), 4.23 (m, 1H, 5-H), 4.06 (m, 4H, 6- $H_{a/b}$, OCH₂ Hep), 4.00 (dd, 1H, β -CH_{2a} Ser), 3.70 (m, 2H, β -CH_{2b} Ser, 2-H), 2.09, 1.99, 1.97 (3s, 9H, 3 CH₃CO), 1.58 (m, 2H, OCH₂-CH₂- Hep), 1.37 (d, J =7.2 Hz, 3H, CH₃ Ala), 1.24 (m, 8H, $-(CH_2)_4$ –CH₃), 0.81 (m, 3H, CH₃ Hep). 50.3-MHz 13 C-NMR (CDCl₃): $\delta =$ 172.40, 170.39, 170.01, 169.50, 168.77 (CO), 155.83 (CO, urethane), 136.03 (ipso-C), 128.52, 128.21, 128.08 (aromatic C), 98.47 (C-1), 68.29, 67.66, 67.07 (C-3, C-4, C-5), 68.29, 67.19, 65.67, (CH_2 - C_6H_5 , O- CH_2 Hep, β -C Ser), 61.69 (C-6), 57.79 (C-2), 53.71 (α-C Ser), 48.48 (α-C Ala), 31.65, 28.83, 28.46, 25.72, 22.53 (5 CH₂) Hep), 20.60 (CH₃CO), 17.86 (CH₃ Ala), 14.04 (CH₃ Hep). C₃₃H₄₇N₅O₁₃ (721.8). Anal. calcd: C 54.92, H 6.56, N 9.70, Found: C 55.11, H 6.69, N 9.57.

N-Benzyloxycarbonyl-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)-L-seryl-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)-L-serine heptyl ester 20

A solution of 75 mg (0.1 mmol) of the Fmoc-protected serine glycoside 12 in a mixture of 1 ml of morpholine and 1 ml of dichloromethane is stirred for 2 h at r.t. and concentrated in vacuo by codistillation with toluene. The residue is dissolved in 2 ml of dichloromethane and a solution of 13.8 mg (0.072 mmol) of 1-ethyl-3-(3dimethylaminopropyl)carbodiimide (EDC) and 20.0 mg (0.15 mmol) of 1-hydroxybenzotriazole (HOBT) in 5 ml dichloromethane/DMF 9:1 is added. After stirring at r.t. for 72 h the reaction mixture is worked up as described for 19. Yield: 56 mg (74%), amorphous solid, $[\alpha]_{22}^{D} = +134.9^{\circ}$ $(c = 0.9, CHCl_3), R_f = 0.21$ (petroleum ether/ethyl acetate 2:1). 400-MHz ¹H-NMR (CDCl₃): $\delta = 7.37-7.27$ (m, 6H, C_6H_5 -, NH), 6.01 (d, J = 7.94 Hz, 1H, NH), 5.40–5.36 (m, 3H, 3-H, 4-H, 4'-H), 5.26 (dd, $J_{2,3} = 11.2$ Hz, $J_{3,4} =$ 3.2 Hz, 1H, 3'-H), 5.19-5.06 (m, 3H, $OCH_2-C_6H_5$, 1-H), 4.94 (d, $J_{1,2}$ = 3.5 Hz, 1H, 1'-H), 4.78 (m, 1H, α -CH Ser), 4.53 (m, 1H, α -CH Ser'), 4.24 (t, J = 6.4 Hz, 1H, 5-H), 4.19 (m, 1H, 5'-H), 4.14 (t, J = 6.8 Hz, 2H, OCH₂ Hep), 4.10-4.00 (m, 6H, 6-H_{a/b}, 6'-H_{a/b}, β -CH₂ Ser), 3.96 (dd, J_1 = 3.0 Hz, J_2 = 10.2 Hz, 1H, β -CH_{2a} Ser'), 3.84 (dd, J_1 = 5.5 Hz, $J_2 = 10.1$ Hz, 1H, β -CH_{2b} Ser'), 3.62-3.58 (m, 2H, 2-H, 2'-H), 2.11, 2.10 (2s, 6H, 2 CH₃CO), 2.00, 1.99 (2s, 9H, 3 CH₃CO), 1.89 (s, 3H, CH₃CO), 1.63 (m, 2H, OCH2-CH2- Hep), 1.39-1.19 (m, 8H, (CH2)4-CH3), 0.85 (m, 3H, CH₃ Hep). 100.6-MHz 13 C-NMR (CDCl₃): $\delta =$ 169.96, 169.84, 169.56, 169.10, 168.97 (CO), 156.0 (CO, urethane), 136.0 (*ipso-C*), 128.52, 128.31, 128.23 (aromatic C), 98.91, 98.70 (C-1, C-1'), 69.16, 68.21, 67.43, 66.31 ($\underline{C}H_2$ - C_6H_5 , O- CH_2 - Hep, β -C Ser, β -C Ser'), 68.08, 67.95, 67.62, 67.38, 67.03, 67.00 (C-3, C-3', C-4, C-4', C-5, C-5'), 61.68, 61.50 (C-6, C-6'), 57.65,

57.58 (C-2, C-2'), 54.37, 52.93 (α -C Ser, α -C Ser'), 31.61, 28.80, 28.41, 25.69, 22.51 (5 CH₂ Hep), 20.53 (Ω H₃CO), 13.97 (CH₃ Hep). C₄₅H₆₂N₈O₂₁ (1051.03), FAB-MS (3-NOBA): 1051.6 (M + H)⁺ calcd: 1051.4.

N-Benzyloxycarbonyl-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)-L-seryl-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)-L-threonyl-L-alanine heptyl ester 21

As described for 20 the glycopeptide heptylester 21 is obtained in 54% yield (615 mg) from 824 mg (1.0 mmol) of the Fmoc-protected threonine glycopeptide 13 and 553 mg (1.0 mmol) of the serine glycoside 15a, m.p.: 59 °C, $[\alpha]_{22}^{D} = +88.5^{\circ} (c = 0.51, CHCl_3), R_f = 0.63 (petroleum)$ ether/ethyl acetate 1:2). 400-MHz ¹H-NMR (CDCl₃): δ = 7.44 (d, J = 6.52 Hz, 1H, NH), 7.33–7.28 (m, 6H, C_6H_{5-} NH), 5.81 (d, J = 7.2 Hz, 1H, NH Ser), 5.39 (m, 2H, 4-H, 4'-H), 5.35 (dd, $J_{2,3} = 10.8$ Hz, $J_{3,4} = 3.4$ Hz, 1H, 3-H), 5.32 (dd, $J_{2,3} = 11.0 \text{ Hz}$, $J_{3,4} = 3.4 \text{ Hz}$, 1H, 3-H), 5.25 (d, $J_{1,2} = 3.7 \text{ Hz}$, 1H, 1-H), 5.13 (d, J = 12.2 Hz, 1H, OCH_{2a}- C_6H_5), 5.04 (d, J = 12.2 Hz, 1H, $OCH_{2b}-C_6H_5$), 5.00 (d, $J_{1,2} = 3.0 \text{ Hz}, 1\text{H}, 1\text{-H}, 4.49 (m, 2\text{H}, \alpha\text{-CH Ala, }\alpha\text{-CH})$ Thr), 4.41 (m, 1H, α -CH Ser), 4.27 (t, J = 6.8 Hz, 1H, 5-H), 4.21 (m, 2H, β-CH Thr, 5'-H), 4.17-4.00 (m, 6H, 6- $H_{a/b}$, 6'- $H_{a/b}$, OCH₂ Hep), 3.94 (dd, $J_1 = 3.73$ Hz, $J_2 =$ 10.24 Hz, 1H, β -CH_{2a} Ser), 3.90 (dd, $J_{1,2} = 3.57$ Hz, $J_{2,3} =$ 10.8 Hz, 1H, 2-H), 3.83 (dd, $J_1 = 5.75$ Hz, $J_2 = 10.24$ Hz, β-CH_{2b} Ser), 3.67 (dd, $J_{1,2} = 3.49$ Hz, $J_{2,3} = 10.97$ Hz, 1H, 2'-H), 2.12, 2.10, 1.992, 1.986, 1.98, 1.97 (6s, 18H, 6 CH₃CO), 1.59 (m, 2H, OCH₂-C $\underline{\text{H}}_{2}$ - Hep), 1.38 (d, J =7.24 Hz, 3H, CH₃ Ala), 1.35–1.18 (m, 8H, $-(CH_2)_4$ – CH_3), 1.15 (d, J = 6.44 Hz, 3H, CH_3 Thr), 0.84 (m, 3H, CH₃ Hep). 100.6-MHz 13 C-NMR (CDCl₃): $\delta = 172.19$, 170.31, 170.24, 169.89, 169.55, 169.43, 168.99, 167.33 (CO), 156.11 (CO, urethane), 135.92 (ipso-C), 128.47, 128.19, 128.08 (aromatic C), 98.78, 97.47 (C-1, C-1'), 74.42 (β-C Thr), 69.36, 68.41, 67.54, 67.17, 67.13 (C-3, C-3', C-4, C-4', C-5, C-5'), 67.32, 65.48 (CH₂-C₆H₅, O-CH₂- Hep, \(\beta\)-C Ser), 61.65 (C-6, C'-6), 58.75 (C-2), 57.60 (C-2'), 55.78 (α-C Thr), 54.59 (α-C Ser), 48.38 (α-C Ala), 31.60, 28.77, 28.46, 25.66, 22.46 (5 CH₂ Hep), 20.53, 20.49 (CH₃CO), 17.73 (CH₃ Ala), 15.82 (CH₃ Thr), 13.93 (CH₃ Hep). C₄₉H₆₉N₉O₂₂ (1136.1). Anal. calcd: C 51.80, H 6.12, N 11.10. Found: C 51.61, H 6.29, N 11.01.

N-(9-Fluorenylmethoxycarbonyl)-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy- α -D-galactopyranosyl)-L-seryl-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy- α -D-galactopyranosyl)-L-threonyl-L-alanine heptyl ester **22**

As described for **20** the glycopeptide heptylester **22** is obtained in 48 % yield (710 mg) from 1 g (1.2 mmol) of the Fmoc protected threonine glycopeptide **13** and 763 mg (1.2 mmol) of the serine glycoside **16**. Oil, $[\alpha]_{22}^D = +84.6^\circ$ (c = 1.0, CHCl₃), $R_f = 0.67$ (petroleum ether/ethyl acetate 1:2). 400-MHz ¹H-NMR (CDCl₃): $\delta = 7.74-7.26$ (m, 10H, aromatic H, NH Ala, NH Thr), 5.87 (d, J = 6.6

Hz, 1H, NH Ser), 5.43 (bs, 1H, 4-H), 5.41 (dd, $J_{3,4} = 3.2$ Hz, $J_{4,5} = 0.8$ Hz, 1II, 4'-H), 5.38 (dd, $J_{2,3} = 11.0$ Hz, $J_{3,4}$ = 3.0 Hz, 1H, 3-H), 5.35 (dd, $J_{2,3}$ = 10.8 Hz, $J_{3,4}$ = 3.3 Hz, 1H, 3'-H), 5.28 (d, $J_{1,2} = 3.55$ Hz, 1H, 1-H), 5.03 (d, $J_{1,2} = 3$ Hz, 1H, 1'-H), 4.52–3.90 (m, 17H, α -CH Ser, α -CH Ala, α-CH Thr, OCH₂ Fmoc, β-CH Thr, 9-H Fmoc, 5-H, 5'-H, 6-H_{a/b}, 6'-H_{a/b}, OCH₂ Hep, β-CH_{2a} Ser, H-2), 3.87 (dd, $J_1 = 7.7 \text{ Hz}$, $J_2 = 10.7 \text{ Hz}$, 1H, β -CH_{2b} Ser), 3.71 (dd, $J_{1,2} = 3.06$ Hz, $J_{2,3} = 11.1$ Hz, 1H, 2'-H), 2.13, 2.12, 2.02, 2.01, 1.98, 1.97 (6s, 18H, 6 CH₃CO), 1.59 (m, 2H, OCH₂-C $\underline{\text{H}}_2$ - Hep), 1.39 (d, J = 7.13 Hz, 3H, CH₃ Ala), 1.36-1.21 (m, 8H, $-(CH_2)_4$ -CH₃), 1.17 (d, J = 6.41Hz, 3H, CH₃ Thr), 0.85 (m, 3H, CH₃ Hep), 100.6-MHz ¹³C-NMR (CDCl₃): $\delta = 172.23$, 170.33, 170.24, 169.90. 169.52, 169.44, 168.90, 167.25 (CO), 156.0 (CO, urethane), 143.72, 143.64, 141.28, 127.73, 127.08. 125.01, 119.97 (aromatic C), 98.91, 97.54 (C-1, C-1'), 74.45 (β-C Thr), 69.44, 68.51, 67.59, 67.21 (C-3, C-3', C-4, C-4', C-5, C-5'), 68.66, 67.43, 65.52 (OCH₂ Fmoc, O-CH₂ Hep, β-C Ser), 61.71, 61.67 (C-6, C'-6), 58.68 (C-2), 57.67 (C-2'), 55.74 (α -C Thr), 54.54 (α -C Ser), 48.41 (α-C Ala), 47.08 (C-9 Fmoc), 31.64, 28.82, 25.70, 22.49 (CH₂ Hep), 20.55 (<u>C</u>H₃CO), 17.78 (CH₃ Ala), 15.78 (CH₃ Thr), 13.97 (CH₃ Hep). C₅₆H₇₃N₉O₂₂ (1224.2). Anal. calcd: C 54.94, H 6.01, N 10.30. Found: C 54.94, H 5.96, N 10.28.

N-Benzyloxycarbonyl-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)-L-seryl-L-alanine heptyl ester 2 3

A mixture of 290 mg (0.4 mmol) of the 2-azidoglycoside 19 and 5 ml of thioacetic acid is stirred for 16 h at r.t., concentrated in vacuo and the 2-acetamido compound 23 is isolated by flash chromatography with petroleum ether/ ethyl acetate 2:1 in 73% yield (215 mg) as an amorphous solid. $[\alpha]_{22}^D = +62.4^{\circ}$ (c = 1.0, CHCl₃), $R_f = 0.10$ (petroleum ether/ethyl acetate 1:1). 400-MHz ¹H-NMR (CDCl₃): $\delta = 7.30$ (m, 5H, C₆H₅-), 6.86 (d, J = 7.0 Hz, 1H, NH), 6.38 (d, J = 9.5 Hz, 1H, NH), 5.80 (d, J = 7.8Hz, 1H, NH Ser), 5.31 (d, $J_{3.4} = 2.6$ Hz, 1H, 4-H), 5.07 (s, 2H, $OCH_2-C_6H_5$), 5.06 (dd, $J_{2,3} = 11.26$ Hz, $J_{3,4} =$ 3.28 Hz, 1H, 3-H), 4.89 (d, $J_{1,2} = 3.45$ Hz, 1H, 1-H) 4.48-4.57 (m, 2H, α -CH, 2-H), 4.40 (m, 1H, α -CH), 4.14-4.02 (m, 5H, 5-H, 6-H_{a/b}, OCH₂ Hep), 3.79 (m, 2H, β-CH₂ Ser), 2.11, 1.97, 1.93, 1.92 (4s, 12H, 4 CH₃CO), 1.60 (m, 2H, OCH₂-C \underline{H}_2 - Hep), 1.38 (d, J = 7.2 Hz, 3H, CH₃ Ala), 1.25 (m, 8H, -(CH₂)₄-CH₃), 0.85 (m, 3H, CH₃ Hep). 100.6-MHz 13 C-NMR (CDCl₃): $\delta = 173.04$, 170.51, 170.37, 170.26, 168.81 (CO), 135.85 (ipso-C), 128.52, 128.27, 128.05 (aromatic C), 98.62 (C-1), 68.46, 66.07 (CH₂-C₆H₅, O-CH₂- Hep, β-C Ser), 68.23, 67.26. 67.12 (C-3, C-4, C-5), 61.84 (C-6), 53.93 (α-C Ser), 48.29, 47.46 (α-C Ala, C-2), 31.59, 28.76, 28.36, 25.67, 22.46 (5 CH₂ Hep), 22.93 (CH₃CON), 20.63, 20.57 (CH₃COO), 18.13 (CH₃ Ala), 13.95 (CH₃ Hep). C₃₅H₅₁N₃O₁₄ (737.8). Anal. calcd: C 56.98, H 6.97, N 5.70. Found: C 56.74, H 7.03, N 5.51.

N-Benzyloxycarbonyl-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- α -D-galactopyranosyl)-L-seryl-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- α -D-galactopyranosyl)-L-threonyl-L-alanine heptyl ester **24**

A mixture of 340 mg (0.3 mmol) of the 2-azidoglycoside 21 and 5 ml of thioacetic acid is stirred for 16 h at r.t., concentrated in vacuo and the 2-acetamido compound 24 is isolated by flash chromatography with petroleum ether/ethyl acetate 1:4 in 72% yield (256 mg). m.p.: 82 °C, $[\alpha]_{22}^D = +96.6^\circ$ (c = 1.0, CHCl₃), $R_f = 0.43$ (ethyl acetate/methanol 18:1). 400-MHz ¹H-NMR (CDCl₃): δ = 7.32-7.28 (m, 5H, C_6H_{5-}), 7.18 (d, J = 7.0 Hz, 2H, 2NH), 6.63 (d, J = 8.9 Hz, 1H, NH), 6.41 (d, J = 9.4 Hz, 1H, NH), 5.97 (d, J = 7.6 Hz, 1H, NH Ser), 5.34 (d, J =2.5 Hz, 1H, 4-H), 5.26 (d, J = 3.4 Hz, 1H, 4'-H), 5.14-5.04 (m, 5H, OCH₂-C₆H₅, 1-H, 3-H, 3'-H), 4.88 (d, $J_{1,2}$ = 3.43 Hz, 1H, 1'-H), 4.52–4.46 (m, 5H, α -CH Ala, α -CH Thr, α -CH Ser, 2-H, 2'-H), 4.25–3.98 (m, 9H, β -CH Thr, 5-H, 5'-H, 6-H_{a/b}, 6'-H_a, OCH₂ Hep), 3.93 (dd, $J_{5,6'b}$ = 6.1 Hz, $J_{6'a,6'b}$ = 10.2 Hz, 1H, 6'-H_b), 3.78 (dd, J_1 = 5 Hz, $J_2 = 10$ Hz, 1H, β -CH_{2a} Ser), 3.73 (dd, $J_1 = 7.5$ Hz, J_2 = 10 Hz, 1H, β -CH_{2b} Ser), 2.12, 2.09, 1.98, 1.95, 1.92, 1.91 (6s, 24H, 8 CH₃CO), 1.59 (m, 2H, OCH₂-CH₂-Hep), 1.42 (d, J = 7.2 Hz, 3H, CH₃ Ala), 1.28–1.21 (m, 8H, $-(CH_2)_4$ -CH₃), 1.18 (d, J = 6.3 Hz, 3H, CH₃ Thr), 0.84 (m, 3H, CH₃ Hep). 100.6-MHz ¹³C-NMR (CDCl₃): $\delta = 173.12, 170.71, 170.63, 170.56, 170.50, 170.28,$ 169.60, 168.73 (CO), 155.9 (CO, urethane), 135.8 (ipso-C), 128.55, 128.32, 128.16 (aromatic C), 98.33, 98.98 (C-1, C-1'), 75.59 (β-C Thr) 67.66, 67.40, 66.26 (<u>C</u>H₂-C₆H₅, O-CH₂- Hep, β-C Ser), 68.19, 67.98, 67.26, 67.22, 67.19, 66.98 (C-3, C-3', C-4, C-4', C-5, C-5'), 61.99, 61.87 (C-6, C'-6), 56.09 (\alpha-C Thr), 54.02 (\alpha-C Ser), 48.51 (α-C Ala), 47.81, 47.51 (C-2, C-2'), 31.58, 28.75, 28.36, 25.66, 22.45 (5 CH₂ Hep), 22.98, 22.79 (CH₃CON), 20.63, 20.58, 20.52 (CH₃CO), 18.05 (CH₃ Ala), 16.78 (CH₃ Thr), 13.94 (CH₃ Hep). C₅₃H₇₇N₅O₂₄ (1168.2). Anal. calcd: C 54.49, H 6.64, N 5.99. Found: C 54.57, H 6.71, N 5.55.

N-(9-Fluorenylmethoxycarbonyl)-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- α -D-galactopyranosyl)-L-seryl-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- α -D-galactopyranosyl)-L-threonyl-L-alanine heptyl ester **25**

A mixture of 625 mg (0.51 mmol) of the 2-azidoglycoside 22 and 25 ml thioacetic acid is stirred for 16 h at r.t., concentrated *in vacuo* and the 2-acetamido compound 25 is isolated by flash chromatography with petroleum ether/ethyl acetate 1:4 in 61 % yield (391 mg) as an amorphous solid. [α]₂₂^D = +90.1° (c = 1.0, CHCl₃), R_f = 0.1 (petroleum ether/ethyl acetate 1:4). 400-MHz ¹H-NMR (CDCl₃): δ = 7.71–7.24 (m, 9H, aromatic H, NH), 7.17 (d, J = 6.84 Hz, 1H, 1 NH), 6.62 (d, J = 8.78 Hz, 1H, NH), 6.49 (d, J = 9.17 Hz, 1H, NH), 5.97 (d, J = 6.59 Hz, 1H, NH Ser), 5.33 (bs, 1H, 4-H), 5.29 (d, J = 2.9 Hz, 1H, 4'-H), 5.13 (m, 2H, 1-H, 3-H), 5.07 (dd, J_{2,3} = 11.6 Hz, J_{3,4} = 2.5 Hz, 1H, 3'-H), 4.89 (bs, 1H, 1'-H), 4.59–4.01 (m, 16H, α-CH Ala, α-CH Thr, α-CH Ser, 2-H, 2'-H, β-CH Thr, OCH₂ Fmoc, 9-H Fmoc, 5-H, 5'-H, 6-H_{a/b}, 6'-H_a

OCH₂ Hep), 3.94 (dd, $J_{5.6'b} = 6.3$ Hz, $J_{6'a.6'b} = 10.3$ Hz, 1H, 6'-H_b), 3.76–3.68 (m, 2H, β -CH_{2a/b} Ser), 2.11, 2.09, 1.98, 1.95, 1.94, 1.93, 1.92, 1.91 (8s, 24H, 8 CH₃CO), 1.59 (m, 2H, OCH₂-CH₂- Hep), 1.41 (d, J = 7.07 Hz, 3H, CH₃ Ala), 1.38–1.24 (m, 8H, $-(CH_2)_4$ –CH₃), 1.19 (d, J =6.3 Hz, 3H, CH₃ Thr), 0.84 (m, 3H, CH₃ Hep). 100.6-MHz ¹³C-NMR (CDCl₃): δ = 173.34, 170.64, 170.51, 170.45, 170.33, 169.60, 168.76 (CO), 155.94 (CO, urethane), 143.59, 141.24, 127.78, 127.08, 124.90, 120.02 (aromatic C), 99.18, 98.33 (C-1, C-1'), 75.78 (β-C Thr), 68.12, 67.94, 67.71, 67.27, 67.16, 66.35 (C-3, C-3', C-4, C-4', C-5, C-5', O-CH₂ Fmoc, O-CH₂ Hep, β-C Ser), 62.02 (C-6, C'-6), 55.99 (α -C Thr), 53.94 (α -C Ser), 48.47 (α-C Ala), 47.85, 47.50 (C-2, C-2'), 47.00 (C-9 Fmoc), 31.62, 28.79, 28.38, 25.69, 22.49 (5 CH₂ Hep), 23.06, 22.83 (CH₃CON), 20.68, 20.56 (CH₃CO), 18.10 (CH₃ Ala), 16.79 (CH₃ Thr), 14.00 (CH₃ Hep). C₆₀H₈₁N₅O₂₄ (1256.3). Anal. calcd: C 57.36, H 6.50, N 5.57. Found: C 57.80, H 6.30, N 5.23.

N-Benzyloxycarbonyl-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)-L-seryl-L-alanine **26**

To a solution of 400 mg lipase M (Amano) from Mucor javanicus in 25 ml of 0.2 M sodium phosphate buffer (pH = 7.0) is added a solution of 70 mg (0.095 mmol) of the heptyl ester 23 in 1.25 ml of acetone and the reaction mixture is shaken gently at 37 °C for 24 h. After saturation with NaCl, the aqueous phase is extracted three times with 50 ml ethyl acetate, the combined organic layers are dried with MgSO₄ and concentrated in vacuo. The residue is purified by flash chromatography using first ethyl acetate as eluent and then ethyl acetate/ethanol 5:1 for the isolation of the product. Yield: 58 mg (95%), m.p. 105 °C, $[\alpha]_{22}^D = +62.7^\circ$ (c = 1.0, CH₃OH), $R_f = 0.25$ (ethyl acetate/methanol 2:1). 400-MHz ¹H-NMR (CD₃OD): δ = 7.40–7.33 (m, 5H, C₆H₅-), 5.42 (dd, $J_{3,4} = 3.0$ Hz, $J_{4,5} <$ 1 Hz, 1H, 4-H), 5.24 (dd, $J_{2,3} = 11.42$ Hz, $J_{3,4} = 3.22$ Hz, 1H, 3H), 5.15 (s, 2H, $OC_{H_2}-C_6H_5$), 4.96 (bs, H_2O), 4.49-4.42 (m, 3H, α -CH Ser, α -CH Ala, 2-H), 4.33 (t, $J_{5,6} = 6.5 \text{ Hz}$, 1H, 5-H), 4.14 (dd, $J_{5,6a} = 6.15 \text{ Hz}$, $J_{6a,6b} =$ 11.16 Hz, 1H, 6-H_a), 4.07 (dd, $J_{5.6b} = 7.0$ Hz, $J_{6a,6b} =$ 11.14 Hz, 1H, 6-H_b), 3.98 (dd, $J_1 = 5.0$ Hz, $J_2 = 10.3$ Hz, 1H, β -CH_{2a} Ser), 3.82 (dd, $J_1 = 4.6$ Hz, $J_2 = 10.2$ Hz, 1H, β-CH_{2b} Ser), 2.17, 2.04, 1.98, 1.97 (4s, 12H, 4 CH₃CO), 1.47 (d, J = 7.25 Hz, 3H, CH₃ Ala). 100.6-MHz ¹³C-NMR (CD₃OD): $\delta = 172.21, 172.13, 171.91, 171.78$ (CO), 158 (CO, urethane), 138 (ipso-C), 129.52, 129.11, 128.96 (aromatic C), 99.66 (C-1), 69.88, 68.86, 68.15 (C-3, C-4, C-5), 69.43, 67.91 ($\underline{C}H_2$ - C_6H_5 , β -C Ser), 63.00 (C-6), 55.75 (α -C Ser), 48.79 (α -C Ala, C-2), 22.74 (CH₃CON), 20.62, 20.53 (CH₃COO), 17.65 (CH₃ Ala). C₂₈H₃₇N₃O₁₄ (639.61). Anal. calcd: C 52.58, H 5.83, N 6.57. Found: C 52.58, H 5.95, N 6.60.

N-Benzyloxycarbonyl-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)-L-seryl-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)-L-serine **27**

To a solution of 100 mg lipase M (Amano) from Mucor javanicus in 25 ml of 0.2 M sodium phosphate buffer (pH

= 7.0) is added a solution of 30 mg (0.029 mmol) of the heptyl ester 20 in 1.25 ml of acetone and the reaction mixture is shaken gently at 37 °C for 48 h. After saturation with NaCl, the aqueous phase is extracted three times with 50 ml of ethyl acetate, the combined organic layers are dried with MgSO₄ and concentrated in vacuo. The residue is purified by flash chromatography using first ethyl acetate as eluent and then ethyl acetate/ethanol 8:2 for the isolation of the product. Yield: 19 mg (71%), amorphous, $[\alpha]_{22}^{D} = +112.5^{\circ}$ (c = 1.0, CH₃OH), $R_f =$ 0.63 (ethyl acetate/methanol 2:1). 400-MHz ¹H-NMR (CD_3OD) : $\delta = 7.44-7.33$ (m, 5H, C_6H_5 -), 5.50-5.43 (m, 4H, 3-H, 3'-H, 4-H, 4'-H), 5.21-5.08 (m, 4H, OCH_2 - C_6H_5 , 1-H, 1'-H), 4.79 (bs, 1H, α -CH Ser), 4.62 (t, J =5.3 Hz, 1H, α -CH Ser'), 4.38 (t, J = 6.41 Hz, 2H, 5-H, 5'-H), 4.21–4.02 (m, 7H, 6-H_{a/b}, 6'-H_{a/b}, β -CH₂-Ser, β -CH_{2a}-Ser'), 3.91 (dd, $J_1 = 5.9$ Hz, $J_2 = 9.7$ Hz, 1H, β -CH_{2b}-Ser'), 3.78–3.73 (m, 2H, 2-H, 2'-H), 2.16 (s, 6H, 2 CH₃CO), 2.05, 2.04 (2s, 9H, 3 CH₃CO), 1.98 (s, 3H, CH₃CO). 100.6-MHz ¹³C-NMR (CD₃OD): $\delta = 172.55$, 172.21, 171.99, 171.58, 171.39 (CO), 158.2 (CO, urethane), 137.9 (ipso-C), 129.53, 129.13 (aromatic C), 99.90 (C-1, C-1'), 69.90, 69.54, 68.11 (<u>C</u>H₂-C₆H₅, β-C Ser, β-C Ser'), 69.70, 69.62, 69.08, 68.22, 68.19 (C-3, C-3', C-4, C-4', C-5, C-5'), 63.02, 62.79 (C-6, C-6'), 59.08, 58.94, 56.12 (C-2, C-2', α -C Ser, α -C Ser'), 20.68, 20.64, 20.46 (CH₃CO). C₃₈H₄₈N₈O₂₁ (952.83), FAB-MS (3-NOBA): 953.4 (M + H)+ calcd: 953.5.

N-Benzyloxycarbonyl-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-\alpha-D-galactopyranosyl)-L-seryl-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-\alpha-D-galactopyranosyl)-L-threonyl-L-alanine 28

To a solution of 400 mg lipase M (Amano) from Mucor jayanicus in 25 ml of 0.2 M sodium phosphate buffer (pH = 7.0) is added a solution of 200 mg (0.17 mmol) of the heptyl ester 24 in 1.25 ml of acetone and the reaction mixture is shaken gently at 37 °C for 24 h. After saturation with NaCl, the aqueous phase is extracted three times with 50 ml of ethyl acetate, the combined organic layers are dried with MgSO₄ and concentrated in vacuo. The residue is purified by flash chromatography using first ethyl acetate as eluent and then ethyl acetate/ethanol 9:3 for the isolation of the product. Yield: 140 mg (76%), m.p.: 146 °C, $[\alpha]_{22}^D = +90.4^\circ$ (c = 1.0, CH₃OH), $R_f = 0.16$ (ethyl acetate/methanol 2:1), 400-MHz ¹H-NMR (CD₃OD): $\delta = 7.44-7.32$ (m, 5H, C₆H₅-), 5.43 (d, J = 2.2Hz, 1H, 4-H), 5.41 (d, J = 2.4 Hz, 1H, 4'-H), 5.24-5.14 (m, 4H, $OC\underline{H}_2$ -C₆H₅, 3H, 3'-H), 4.99 (d, $J_{1,2} = 3.41$ Hz, 1H, 1-H), 4.65–4.27 (m, 8H, 2-H, 2'-H, α -CH Ala, α -CH Thr, α -CH Ser, β -CH Thr, 5-H, 5'-H), 4.19-4.01 (m, 6- $H_{a/b}$, 6'- $H_{a/b}$, β -CH_{2a} Ser), 3.87 (dd, $J_1 = 5.16$ Hz, $J_2 =$ 10.4 Hz, 1H, β-CH_{2b} Ser), 2.18, 2.17, 2.053, 2.049, 2.03, 1.983, 1.978, 1.969 (8s, 24H, 8 CH₃CO), 1.45 (d, J = 7.0 Hz, 3H, CH₃ Ala), 1.37 (d, J = 6.1 Hz, 3H, CH₃ Thr). 100.6-MHz ¹³C-NMR (CDCl₃): δ = 172.60, 172.19, 172.11, 172.05, 171.86, 171.59 (CO), 158.0 (CO, urethane), 138.3 (ipso-C), 129.52, 129.11,

(aromatic C), 100.84, 99.83 (C-1, C-1'), 79.09 (β -C Thr) 69.40, 67.92 (CH₂–C₆H₅, β -C Ser), 70.47, 69.80, 68.96, 68.74, 68.28, 68.19 (C-3, C-3', C-4, C-4', C-5, C-5'), 63.28, 62.97 (C-6, C'-6), 57.88 (α -C Thr), 55.92 (α -C Ser), 48.78, 47.57, 47.35 (α -C Ala, C-2, C-2'), 22.82, 23.12 (CH₃CON), 20.69, 20.64, 20.57, 20.53 (CH₃CO), 19.14 (CH₃ Ala), 17.79 (CH₃ Thr). C₄₆H₆₃N₅O₂₄ * 2H₂O (1106.06). Anal. calcd: C 49.95, H 6.11, N 6.33. Found: C 49.96, H 5.95, N 6.66.

N-(9-Fluorenylmethoxycarbonyl)-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)-L-seryl-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)-L-threonyl-L-alanine **29**

To a solution of 1 g lipase M (Amano) from Mucor javanicus in 75 ml of 0.2 M sodium phosphate buffer (pH = 7.0) is added a solution of 500 mg (0.40 mmol) of the heptyl ester 25 in 3.75 ml of acetone and the reaction mixture is shaken gently at 37 °C for 48 h. After saturation with NaCl, the aqueous phase is extracted three times with 50 ml of ethyl acetate, the combined organic layers are dried with MgSO₄ and concentrated in vacuo. The residue is purified by flash chromatography using first ethyl acetate as eluent and then ethyl acetate/ethanol 8:2 for the isolation of the product. Yield: 237 mg (51%), m.p.: amorphous, $[\alpha]_{22}^{D} = +69.1^{\circ}$ (c = 0.54, CH₃OH), $R_f =$ 0.27 (ethyl acetate/methanol 2:1). 400-MHz ¹H-NMR (CD₃OD): $\delta = 7.85-7.34$ (m, 8H, aromatic H), 5.41 (d, J) = 2.5 Hz, 1H, 4-H), 5.38 (d, J = 2.2 Hz, 1H, 4'-H), 5.24-5.14 (m, 3H, 1-H, 3-H {dd, $J_{2,3} = 11.5 \text{ Hz}$, $J_{3,4} = 3.2 \text{ Hz}$ }, 3'-H {dd, $J_{2,3} = 11.5$ Hz, $J_{3,4} = 3.5$ Hz}), 4.99 (d, $J_{1,2} =$ 3.12 Hz, 1H, 1'-H), 4.66-4.62 (m, 2H), 4.51-4.38 (m, 5H), 4.34–4.26 (m, 4H), 4.14 (dd, $J_1 = 6.3$ Hz, $J_2 = 11.0$ Hz, 1H), 4.08-3.98 (m, 4H), 4.66-3.98 (2-H, 2'-H, α -CH Ala, α-CH Thr, α-CH Ser, OCH₂ Fmoc, 9-H Fmoc, β-CH Thr, 5-H, 5'-H, 6-H_{a/b}, 6'-H_{a/b}, β -CH_{2a} Ser), 3.87 (dd, $J_1 = 5.3 \text{ Hz}, J_2 = 10.5 \text{ Hz}, 1\text{H}, \beta\text{-CH}_{2b} \text{ Ser}), 2.17, 2.16,$ 2.02, 2.00, 1.99, 1.98, 1.96, 1.92 (8s, 24H, 8 CH₃CO), 1.45 (d, J = 7.2 Hz, 3H, CH₃ Ala), 1.35 (d, J = 6.2 Hz, 3H, CH₃ Thr). 100.6-MHz 13 C-NMR (CDCl₃): $\delta =$ 173.41, 172.15, 172.09, 172.01, 171.83, 171.65 (CO), 158.4 (CO, urethane), 145.09 (C-4_a, C-4_b Fmoc), 142.57 (C-8_a, C-9_a Fmoc), 128.84, 128.22 (C-3/6 Fmoc), 126.17 (C-2/7, C-1/8 Fmoc), 121.00 (C-5, C-4 Fmoc), 100.91, 99.86 (C-1, C-1'), 79.40 (β-C Thr), 70.37, 69.76, 69.01, 68.70, 68.27, 68.18 (C-3, C-3', C-4, C-4', C-5, C-5'), 69.37, 63.38, 62.94 (OCH₂ Fmoc, β-C Ser, C-6, C'-6), 57.84 (α -C Thr), 55.87 (α -C Ser), 48.88, 48.42 (α -C Ala, C-2, C-2', C-9 Fmoc), 23.13, 22.83 (CH₃CON), 20.66, 20.61, 20.51 (CH₃CO), 19.32 (CH₃ Ala), 17.61 (CH₃ Thr). C₅₃H₆₇N₅O₂₄ (1158.1). Anal. calcd: C 54.97, H 5.83, N 6.05. Found: C 54.59, H 5.75, N 5.91.

Acknowledgement

This research was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

- (a) Kunz, H. Angew. Chem. 1987, 99, 297; Angew. Chem., Int. Ed. Engl. 1987, 26, 294; (b) Kunz, H.; Brill, W. K.-D. Trends Glycosci. Glycobiol. 1992, 4, 71.
- 2. (a) Waldmann, H. Kontakte (Merck) 1991, 2, 33; (b) Waldmann H.; Reidel, A. J. Prakt. Chem. 1993, 335, 109.
- 3. Waldmann H. Tetrahedron Lett. 1988, 29, 1131; Liebigs Ann. Chem. 1988, 1175.
- 4. Braun, P.; Waldmann, H.; Vogt, W.; Kunz, H. SYNLETT 1990, 105; Liebigs Ann. Chem. 1991, 165.
- 5. Braun, P.; Waldmann, H.; Kunz, H. SYNLETT 1992, 39.
- 6. (a) Ishii, H.; Unabashi, K.; Mimura, Y.; Inoue, Y. Bull. Chem. Soc. Jpn 1990, 63, 3042; (b) Cantacuzène, D.; Attal, S.; Bay, S. BioMed. Chem. Lett. 1991, 197; (c) Attal,

- S.; Bay, S.; Cantacuzène, D. *Tetrahedron* 1992, 48(42), 9251; (d) Schultz, M.; Hermann, P.; Kunz, H. *SYNLETT* 1992, 37.
- 7. Belleau, B.; Malek, G. J. Am. Chem. Soc. 1968, 90, 1651.
- 8. Paulsen, H.; Rauwald, W.; Weichert, U. Liebigs Ann. Chem. 1988, 75.
- 9. Rosen, T.; Lico, I. M.; Chu, D. T. W. J. Org. Chem. 1988, 53, 1580.
- 10. Braun, P.; Kunz, H., unpublished results.
- 11. (a) Sheehan, J. C.; Cruickshank, P. A.; Boshart, G. L. J. Org. Chem. 1961, 26, 2525; (b) Sheehan, J. C.; Preston, J.; Cruickshank, P. A. J. Am. Chem. Soc. 1965, 87, 2492.
- 12. König, W.; Geiger, R. Chem. Ber. 1970, 103, 788.
- 13. (a) Carpino, L. A.; Han, G. Y. J. Org. Chem. 1972, 37, 3404; (b) Schultheiß-Reimann, P.; Kunz, H. Angew. Chem. 1983, 95, 64; Angew. Chem., Int. Ed. Engl. 1983, 22, 62.